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a b s t r a c t

While most students seem to solve information problems effortlessly, research shows that the cognitive
skills for effective information problem solving are often underdeveloped. Students manage to find in-
formation and formulate solutions, but the quality of their process and product is questionable. It is
therefore important to develop instruction for fostering these skills. In this research, a 2-h online
intervention was presented to first-year university students with the goal to improve their information
problem solving skills while investigating effects of different types of built-in task support. A training
design containing completion tasks was compared to a design using emphasis manipulation. A third
variant of the training combined both approaches. In two experiments, these conditions were compared
to a control condition receiving conventional tasks without built-in task support. Results of both ex-
periments show that students' information problem solving skills are underdeveloped, which underlines
the necessity for formal training. While the intervention improved students’ skills, no differences were
found between conditions. The authors hypothesize that the effective presentation of supportive infor-
mation in the form of a modeling example at the start of the training caused a strong learning effect,
which masked effects of task support. Limitations and directions for future research are presented.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Searching theweb for information seems effortless for students;
they simply navigate to a popular search engine, type in a couple
keywords, and select some of the sources that appear to be relevant
(MaKinster, Beghetto, & Plucker, 2002). Most students easily find
their way without any explicit instruction. They paraphrase, cite, or
e in theworst casee copy and paste some of the text into their own
document and the job is done (De Vries, van der Meij, & Lazonder,
2008). The abundance of information on the internet is a bliss.
While this may be viewed as a successful process in the eyes of the
student, from an educational perspective it can be awaste of time. If
the student is not equipped with the necessary skills, such as
advanced search strategies and the ability to critically scrutinize
information sources to determine relevance and reliability, chances
are that the search process and the product fall short of what the
teacher intended. It may be true that younger generations of
jean), johan.vanstrien@ou.nl
er), saskia.brand-gruwel@ou.
students appear to quickly master the skills needed to navigate
online information sources, but it is premature to claim that they
automatically develop the skills to find correct and reliable online
sources and learn from them (Kennedy, Judd, Churchward, Gray, &
Krause, 2008; Kirschner & van Merri€enboer, 2013; Rosman, Mayer,
& Krampen, 2016).

While most educational institutions acknowledge information
problem solving (IPS) as an essential academic skill, they often
strugglewith implementation (Badke, 2010). To promote transfer of
IPS to daily practice, it is advisable to practice these skills in
different contexts and across different domains throughout the
whole curriculum. This is problematic, and most schools experi-
ence great difficulty in finding a suitable place and time in the
curriculum. Many, in turn, resort to providing nothing more than a
short library training. To support teachers and faculty in embedding
IPS skills in educational curricula, it is desirable to investigate
which instructional approaches work well for IPS skills. This paper
takes a first step in that direction, describing the development and
empirical testing of instruction for IPS skills, based on a solid
instructional designmodel for teaching complex skills. Implications
are discussed for both the domain of instructional design and in-
formation problem solving.
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2. Theoretical framework

2.1. Information problem solving

In educational settings, teachers often use information prob-
lems, where the necessary information to solve the problem is
lacking, as an educational approach. The student is required to
gather the missing information from external sources and combine
the findings to construct a solution. Simple information problems,
such as looking up the average monthly temperature in a country,
pose little challenge for most students. Complex information
problems, such as writing an essay on the effects of global warming
on biodiversity, are a far more difficult challenge, because students
will need to find, evaluate, and process sources of information that
can vary greatly in terms of their trustworthiness, bias, reliability,
or can contain contradictory information. Teachers often expect
that having students search for information will automatically lead
to their learning (Kirschner, Sweller, & Clark, 2006). But correctly
and efficiently solving an information problem is a complex higher-
order cognitive competence requiring a broad range of different
cognitive skills that these students might not possess. The range of
skills has been summarized as a 5-step model (see Fig. 1) in which
students iterate between the stages ‘define the problem’, ‘search
information’, ‘select information’, ‘process information’, and ‘pre-
sent information’, each step consisting of several constituent skills
(Brand-Gruwel, Wopereis, & Vermetten, 2005; Brand-Gruwel,
Wopereis, & Walraven, 2009).

To solve an information problem, the learner first needs to reach
an understanding of the task and identify the needed information
to define and delimit the task domain. In this step, formulating a
clear and concise question is essential to stay focused and avoid
unnecessary deviations while searching. Second, search terms need
to be generated and tried out in a search engine. By identifying key
concepts from the question and then systematically changing,
adding, or removing terms while correctly using the available
Boolean operators, the learner maximizes the chance to find rele-
vant information sources. Third, it is important to maintain a
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Fig. 1. Decomposition of the skill ‘information proble
critical attitude while evaluating the search results page, the sub-
sequently visited information sources, and the information itself.
Critical scrutiny avoids spending time on irrelevant websites or
becoming occupied with information that is outdated, false, or
which originates from unreliable or biased sources. Fourth, when
relevant and reliable sources are found and stored, the learner
needs to process their contents, deal with overlapping and con-
flicting information, and synthesize the different elements chosen
from the separate sources. Finally, the solution can be presented in
a product such as an essay or a presentation, depending on the task.
It is important that the product clearly answers the question that
was defined earlier in the task. Moreover, during all of these steps,
the learner should regulate the search process, decide whether
sufficient useful information has been found, and steer the process
to avoid deviations or distractions.

Previous research indicates students may quickly develop the
instrumental skills needed to operate digital devices and use soft-
ware and internet browsers, but IPS skills are generally underde-
veloped or absent. In a comparison of experts and novices, Brand-
Gruwel et al. (2005) found that novices took less time for orienta-
tion, chose less effective keywords, judged and evaluated sources
less often, and hardly regulated their process. In a literature review,
Walraven, Brand-Gruwel, and Boshuizen (2008) discuss several
studies that show execution of IPS skills leave much room for
improvement for all age groups. Similarly, studies by Van Deursen
and van Dijk (2009) and Van Deursen and van Diepen (2013) show
users of all ages experience problems with query formulation,
evaluation of search results and processing of information.

Two things become clear from these findings. First, IPS is a
complex higher-order cognitive skill. Successful problem solving
depends on the existence of knowledge, the mastery and coordi-
nation of a set of skills and the adoption of a critical attitude. Sec-
ond, research shows clear deficiencies in students of almost all
ages. In general, students' IPS skills are often overestimated or ex-
pected to develop naturally over time. These IPS skills may not be of
the level that is often expected of the student problem solver, or
from the so-called ‘digital natives’ (see also: Kirschner & van
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Merri€enboer, 2013). Providing students with a complex task for
which they do not possess the required skills risks overloading
their memory systems and lowering task performance and
learning. Therefore, the development of evidence-based instruction
for fostering IPS skills is warranted.

2.2. Instructional design for complex learning

Complex learning is defined as “the integration of knowledge,
skills and attitudes; coordinating qualitatively different constituent
skills; and often transferring what was learned in school or training
to daily life and work” (Kirschner & van Merri€enboer, 2009, p.244).
The Four Component Instructional Design (4C/ID) model provides an
extensive blueprint and approach for developing instruction to
achieve complex learning, based on solid psychological and
educational research (Van Merri€enboer & Kirschner, 2013). First,
the model advocates the use of authentic, whole tasks that require
integration of knowledge, skills and attitudes, and coordination of
constituent skills. Second, it provides guidelines to correctly pro-
vide the information needed to solve the problems: domain
knowledge and a structured approach to solve the problem. Third,
it advises providing just-in-time procedural information during the
tasks to aid problem-solvers with routine tasks. The fourth
component, part-task practice, is necessary when performance of
these routine tasks needs to be automated.

This task-centered approach confronts learners with a series of
whole-tasks in the learner's zone of proximal development. Task
complexity increases to keep up with learner progress. However,
especially in the early phases of learning, tasks can be too complex
for the learner, because they introduce too many interacting ele-
ments or the learner's knowledge schema are insufficiently devel-
oped. In these cases, the learner's memory system may become
overloaded, which can negatively impact learning (Paas & van
Merri€enboer, 1994). In situations of complex learning and
authentic tasks, there are many elements that potentially increase
the amount of cognitive load experienced by the student. It is
therefore essential that instructional designers take great care to
reduce unnecessary load, while maintaining activities that induce
germane load and lead to learning.

For IPS specifically, task complexity is not the only factor that
influences the demands on working memory during problem
solving, and in consequence, learning and instruction. Rouet (2009)
summarizes additional factors in a conceptual framework
comprising three dimensions: individual variables, information
resources, and problem context. Instructional designers should be
aware that personal factors, such as an individual's domain-specific
knowledge (Monchaux, Amadieu, Chevalier, & Marin�e, 2015), age
(Chevalier, Dommes, & Marqui�e, 2015), attitudes and biases (Ford,
Miller, & Moss, 2005; Van Strien, Brand-Gruwel, & Boshuizen,
2014), epistemic beliefs (Kammerer, Bråten, Gerjets, & Strømsø,
2012), and reading skills (Rouet, Ros, Goumi, Macedo-Rouet, &
Dinet, 2011) can affect the learning process and outcomes. Simi-
larly, source factors (DeStefano & LeFevre, 2007) and task type
(Wirth, Sommer, von Pape, & Karnowski, 2015) may influence
variables in the learning process. While most of these factors lie
outside the designer's influence, they all affect the demand
imposed on working memory during the IPS process.

For situations where tasks may be too demanding for a learner
to complete successfully, the problem-solving process must be
supported (Van Merri€enboer, 2013). The 4C/ID model stresses the
importance of built-in task support. While learners can be sup-
ported in many ways (i.e. with case studies, modeling and/or
worked examples, inducing reflection, etc.), the current experi-
ments focus on two approaches that appear most applicable to IPS
instruction, namely the completion strategy and emphasis
manipulation.

2.2.1. Completion tasks
A completion task is a problem where the learner is provided

with a given state and a partial solution. After studying the partial
solution and the given information, the learner then has to com-
plete the remaining solution steps in order to solve the problem
(Van Merri€enboer, 1990; Van Merri€enboer & De Croock, 1995). This
approach is effective for several reasons. First, completion tasks
inherently stimulate active processing of the given solution steps
because they contain essential information the learner needs to
process before being able to continue. In addition, the provided
solution steps are examples of a correct systematic approach to
solving the problem. This enables learners to study the examples
and by induction generate schemas of correct solution strategies
themselves (Van Merri€enboer, 2013). Studying correct examples
(albeit partial solutions) can often be more effective than solving
whole problems, especially early in the learning process (Renkl &
Atkinson, 2003). When learners lack the necessary schemas and
strategies, they will fall back to naïve and ineffective strategies such
as means-end analyses or trial-and-error to solve the problem.
Providing sufficient worked-out steps in this phase can avoid this
(Van Gog, Paas, & van Merri€enboer, 2004).

The second benefit of using completion tasks is that a designer
can change the number of worked-out steps to adapt the task to the
learner's level. For learners in an early learning phase, it would be
beneficial to increase the number of worked-out steps (e.g., one or
even no steps missing), providing ample examples of correct
complete or partial solutions and allowing the learner to induce the
necessary schemas and strategies (Atkinson, Renkl,&Merrill, 2003;
Renkl, Atkinson, & Große, 2004). In later learning phase, learners
benefit more from more conventional tasks that contain just a few
worked-out steps. Offering too many worked-out steps to these
learners would create the risk of inducing the expertise-reversal
effect (Kalyuga, Ayres, Chandler, & Sweller, 2003; Kalyuga &
Sweller, 2004). By gradually reducing the number of worked-out
steps as a learner progresses, the amount of support that is
offered corresponds more closely to the amount of support that is
actually needed. In the context of IPS, this fading of solution steps
can only be applied backward, meaning that worked-out solution
steps late in the process will always fade before solution steps early
in the process. To illustrate, consider the opposite: A worked-out
example where the solution and information sources are given
but the student needs to define the problem and generate search
terms. Such a backward information problem is unrealistic, and
practicing it has little purpose. In conclusion, a gradual transition
from completely worked-out problems to conventional problems
would be a good strategy for instruction: an approach dubbed the
completion strategy.

Wopereis, Frerejean, and Brand-Gruwel (2015) implemented
the completion strategy in a university-level IPS training program.
In their training, an example completion task provides students
with a problem orientation, a well-formulated problem statement
and research question, and a partial list of search terms. In this case,
the step ‘problem definition’ is completely worked out, and the step
‘searching’ is partially worked out. Students are required to process
the problem orientation to become familiar with the task domain
and to activate any prior knowledge. The given problem statement
and research question provide a clear direction for the search and
inform them which information is needed, and consequently,
which information is not. Based on this orientation, students then
extend the list of search terms and proceed with the search for
information and the remaining solution steps (‘select information’,
‘process information’, and ‘present information’). Compared to a
conventional task where students perform the whole task, this
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approach requires less decision making - and therefore less room
for error - and provides an additional example to learn from. The
expectation here is that such tasks will impose fewer cognitive
demands than conventional problems.

2.2.2. Emphasis manipulation
Students can also be supported by guiding them in the alloca-

tion of their attention to a certain skill (i.e., generating search
terms) or a step in the process (i.e., select information) within a
learning task. Students then perform the whole task from begin-
ning to end, but just one aspect of the solution procedure is
emphasized, often by instructions and feedback. In subsequent
tasks, the emphasis and thus the allocation of the learner's atten-
tion shifts to a different aspect of the task. Note that the task is not
broken up into part-tasks, but only the relative emphasis of the
selected aspect varies. All skills are still performed in the context of
the whole task. This approach, called emphasis manipulation or
emphasis change (Gopher, 2006; Gopher, Weil, & Siegel, 1989),
reduces strain on working memory because not all instruction
needs to be kept available in working memory, and attention is
focused on a single aspect, not divided over all aspects.

The emphasis change approachwas effective in a training regime
for a high-workload computer game called Space Fortress and in
several dual-task settings (Gopher, 2006). In other research, stu-
dents who received whole-task training with emphasis change
were less easily disrupted by a concurrent task than students
receiving part-task training (Fabiani et al., 1989). In addition,
Yechiam, Erev, and Gopher (2001) demonstrated that an emphasis
change approach is more effective than guided instruction in set-
tings where searchers quickly converge to suboptimal strategies.
The idea here is that problem solvers make only small changes to
their current, suboptimal, strategy and insufficiently explore more
diverse solution strategies, a process called melioration (Yechiam,
Erev, Yehene, & Gopher, 2003). Emphasis change protocols facili-
tate the exploration of other, potentially more effective strategies.

The errors that can be observed when novices search the web
may be a sign of melioration. Lacking sufficient skill, they employ
naive strategies that will find some results (partly due to increasing
quality of search engines), even though it may not be the infor-
mation they are looking for. This will then lead them to obtaining
suboptimal information, which in turn leads to a suboptimal so-
lution to the task. Students experience the success of solving the
problem, which reinforces their current behavior and leads to a
similar approach to the next problem. Students see no reason to
expend extra effort to significantly change their strategy. Emphasis
change can encourage students to explore other strategies, such as
more extensive planning, or using thesauri to generate keywords,
which increases the chance of a more effective or efficient problem
solving process.

Placing emphasis on specific aspects of a task can be done by
incorporating instruction and feedback during those specific as-
pects of the learning task. A simple and effective method to provide
instruction and feedback in an online environment is by using
prompts (see: Stadtler & Bromme, 2008). In the case of IPS, three
types of prompts are effective: anticipative prompts delivered
before execution of the targeted skill, instructional prompts deliv-
ered just in time before execution of the targeted skill, and reflec-
tion prompts delivered after performing the skill.

Consider a student working on a learning task where the skill
evaluating sources is emphasized and therefore accompanied by
prompts. Before she starts evaluating sources (i.e., the targeted
skill), she is prompted: “Describe your approach to the next step.
Where will you focus your attention?” By articulating her up-
coming actions before performing the skill, anticipative reasoning,
a skill found in effective problem solvers, is stimulated (Renkl,
1997). The student answers: “I'll look at the result list and click
on some of the titles that seem interesting. I'll then read that text. If
it seems relevant, I'll probably use it.” The answer reveals that her
solution schema is still incomplete, and that she has not yet learned
to evaluate a search engine results page or an information source.
Merely activating knowledge is therefore not sufficient. Her current
schemas or strategies need to be corrected or completed.

She is prompted again, this time simply with instructions. The
instructional prompt explains how to evaluate search results (i.e.,
pay attention to domain names, publication dates, snippets) before
clicking a link and how to judge information sources (i.e., take into
account author reputation, target audience, information goal,
publication date). It essentially gives general feedback on her pre-
vious answer. The student will acknowledge that her previously
articulated approach was incomplete and that she should not
merely click ‘interesting’ links and use ‘relevant’ information. She
learns that there are many more criteria to use to discriminate
between interesting and relevant. She then processes this infor-
mation and immediately carries out the solution step, with this
new knowledge in memory. The subsequent application of the new
knowledge stimulates assimilation into knowledge schemas.

To enforce this process, a reflection prompt can be delivered
after the step is performed: “How did it go? Did you encounter any
problems?” This prompt induces reflection and forces her to look
back at how she applied the new knowledge, which should rein-
force the use of a correct ormore effective solution strategy (Saito&
Miwa, 2007; Stark & Krause, 2009). Taken together, this combina-
tion of three prompts, the prompt triad, fulfills the purpose of
emphasis manipulation by first lowering cognitive demand by
focusing student attention to a particular aspect of the task while
leaving the whole task intact and then promoting improvements in
strategies by activating and correcting current knowledge schema.
3. The present study

Seemingly little research has focused on the development of
holistic instruction for IPS. Most studies either focus on elements of
instruction, such as feedback (e.g., Timmers, Walraven, &
Veldkamp, 2015), restrict the search space to prefabricated por-
tals (De Vries et al., 2008), or focus instruction on elements of the
skill, such as source evaluation (Walraven, Brand-Gruwel, & Bosh-
uizen, 2010). Some are focused on classroom interventions (e.g.,
Argelag�os & Pifarr�e, 2012; Kuiper, Volman, & Terwel, 2008). In the
current study, we adopt a holistic approach for teaching the com-
plete skill in individual (online) instruction and take a first step
towards developing instruction based on whole-tasks with built-in
task support. Two experiments were conducted to investigate the
effects of two forms of task support (completion strategy vs.
emphasis manipulation) on the acquisition of IPS skills in a short
online training. This training was embedded as a standalone
practical assignment in university students' first-year curriculum.
As an intervention in a naturalistic setting, this training aimed to
develop students’ IPS skills while detecting differences in the
extent of learned skills due to the different methods of support. It
was expected that students who receive at least one form of task
support (i.e., completion tasks and/or emphasis manipulation) will
perform better than students who do not receive task support
(Hypothesis 1) and students who receive a combination of both
forms of support will perform better than students who receive
only a single form of support (Hypothesis 2). To help explain dif-
ferences in learning outcomes, students were asked to report the
required mental effort at several points during the learning phase.
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4. Experiment 1

4.1. Method

4.1.1. Participants
A total of 96 students between 18 and 24 years old (Mage ¼ 18.7

years) participated in this experiment, 89 of whom were female
(92.7%) and 7 were male (7.3%). All participants were first-year
Pedagogical Science students at a Belgian university.

4.1.2. Experimental design
The experiment was a regular pretest-posttest design with four

conditions. All conditions received a 2-h online training consisting
of an instructional video, a modeling example, and four learning
tasks. Each condition received a different form of task support
during three of the four learning tasks. The first condition received
task support in the form of the completion strategy combined with
emphasis manipulation (CS þ EM). The second condition received
completion tasks, but no emphasis prompts (CS). The third condi-
tion received emphasis prompts, but no completion tasks (EM). The
fourth conditionwas a control condition and received conventional
learning tasks without support. The different forms of task support
are further detailed in the section ‘Task support’.

4.1.3. Materials
4.1.3.1. Online training. In a 2-h classroom session, students
received an online training that started with a 14-min instructional
video introducing the five steps of the IPS process (i.e., ‘define’,
‘search’, ‘select’, ‘study’, ‘present’) including their constituent skills.
The instructional video was followed by a modeling example: a 10-
min screencast in which a fictitious expert showed a systematic
approach to solving an information problem. This modeling
example was split into four short fragments that ended with the
questions “What do you think of the actions of the expert?” and
“How does this differ from your current approach?” intended to
stimulate students to formulate explanations and stimulate active
processing of the example (Atkinson et al., 2003; Renkl & Atkinson,
2002). These elements formed the supportive information
component in the 4C/ID model.

The training further comprised four learning tasks in the form of
a web search exercise. Students received a problem description and
had approximately 15 min to search the web for information and
formulate a solution to the problem. The topics were: effects of
stretching before sports, effects of electromagnetic radiation from
cell phones, effects of violence in videogames, and effects of using
media devices before sleeping. The learning tasks guided students
through the problem solving steps with on-screen instructions.
Students were asked to explicitly formulate research questions and
search terms, and list the URL of four sources that contributed to
their solution, along with an explanation of why they chose these
sources. At the end of the learning task they formulated a solution
in a few sentences. Each of the experimental conditions received a
different form of support during learning tasks 1 to 3. A fourth and
final task was presented that did not include any support or guid-
ance, but simply gave a problem description and a textbox for an
answer. This task was identical for all students and contained no
explicit instruction.

4.1.3.2. Task support. For the three experimental conditions,
learning tasks 1 to 3 contained built-in task support in the form of
completion tasks, emphasis prompts, or both. These tasks were
designed in a way to support the problem-solving process without
overloading the student. While the IPS model (Brand-Gruwel et al.,
2009) describes a five-step approach, to comply with time con-
straints in this experiment the steps ‘select information’ and
‘process information’ were merged to a single step and no task
support was supplied on the final step: ‘present information’. Pre-
senting information can be done in countless ways, and providing
support on this skill would be very time-consuming. Additionally,
students likely benefit more from support on the first four steps
than from support on presenting information. In conclusion, task
support is offered on the steps ‘define the problem’, ‘search infor-
mation’, and ‘select & process information’.

The control condition received no task support at all, meaning
that they work through each learning task by following the guid-
ance on the screen that take them through the steps ‘define the
problem’, ‘search information’, ‘select & process information’ and
‘present information’.

The EM condition received emphasis manipulation, meaning
that each learning task contained one solution step that was
emphasized with a prompt triad: an anticipative prompt and an
instructional prompt before execution of the step, and a reflective
prompt afterwards. In learning task 1, the step ‘select & process
information’ was emphasized, in learning task 2 the step ‘search
information’, and in learning task 3 the ‘step define the problem’.

The CS condition received completion tasks. In these tasks, some
solution steps are already worked out and replaced with a very
short video (approximately 1e2 min) of a fictitious expert
reasoning through the solution step. No further action was
required. The worked-out steps were faded backwards, meaning
each subsequent learning task contained one less worked-out step
and students were therefore required to perform one step more in
each learning task. In learning task 1, the steps ‘define the problem’

and ‘search information’ were worked out and students had to
select and process sources from the given search results to
formulate a solution. In task 2, only ‘define the problem’ was
worked out and all other steps had to be performed. In task 3, no
steps were worked out.

Finally, in the CSþ EM condition completion tasks and emphasis
prompts were combined, meaning that the prompt triad was added
to the first step that followed the worked-out steps. This entails
that in task 1, the first two steps were worked out: ‘define the
problem’ and ‘search information’. The next step, ‘process & select
information’ was emphasized with a prompt triad. The final step
had to be performed without support. In task 2, only the first step
wasworked out and emphasis shifted to ‘search information’. In the
third task, no worked-out steps were given and ‘define the prob-
lem’ was emphasized. See Fig. 2 for a graphical overview of the
experimental design.

4.1.3.3. Measurement of information problem solving skill. To mea-
sure IPS skills in such a short timeframe, an online skills test was
developed that aimed to reveal the student's level of performance
without requiring the performance of another whole-task. The
tests confronted students with seven fabricated situations that
occur during an information problem and asked them to formulate
their next action. This closely mimics a realistic task situation. To
ensure validity, the items were based on important subskills in the
first four steps of the IPS model by Brand-Gruwel et al. (2009). The
step ‘present information’ was not measured because presentation
of a problem solution is a multifaceted skill too difficult to measure
quickly, and the training did not include support on this step. See
Table 1 for an overview of the pretest and posttest items. For
example, the item corresponding to ‘select information’ showed a
fabricated SERP (search engine results page) and asked students to
indicate which sources they would select and why. Answers were
scored blindly, based on a task-specific rubric that resulted in a
maximum subscore of 4 points per step, for a maximum total of 16
points. The scoring sheet and procedure are included in Appendix 1.
The items in the pretest concerned the topic (i.e., problem domain)
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Fig. 2. Overview of the experimental design: four conditions (rows) received four learning tasks (columns) that consist of four steps. Worked-out steps in these tasks are marked
with gray, emphasized steps are colored. Steps that are not colored contained no built-in support. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Overview of pretest and posttest.

Item Step Subskill Given Question

1 Define the
problem

Problem
orientation

A problem description How would you start this task? What is your first step and why?

2 Define the
problem

Formulating a
question

A problem description Which problem statements would you formulate? Why do you choose these?

3 Search
information

Generating
search terms

A problem description Which search query would you type into Google? Formulate two alternative search
queries.

4 Select
information

Evaluating
search results

A fabricated SERP Which three websites would you select? Why did you select these websites?

5 Process
information

Scanning a
source

A screenshot of a text-rich website, zoomed out
so the text is unreadable

What do you do when you visit a text-rich website and want to find out if it contains
relevant information? How do you proceed?

6 Process
information

Evaluating
information

A short text fragment containing an argument
given by an expert

Which criteria do you use to determine whether information is useful for your task?
What are your conditions for use?

7 Process
information

Contrasting
information

Two short, contradicting arguments How do you deal with contradicting information? How does this affect your
solution? Explain.
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of gender-specific education. The posttest items were identical to
the pretest items, but on the topic of themalleability of intelligence.
A second experimenter rescored 20 randomly chosen participants
in order to obtain a measure of inter-rater agreement.
4.1.3.4. Mental effort rating. Integrating and coordinating the skills,
knowledge and attitudes that are required to effectively and effi-
ciently solve an information problem is a complex activity that
places high demands on the learner's memory system. To bring
down this complexity, built-in task support is incorporated in the
learning tasks. It can be expected that different types of support
impose different amounts of cognitive load on the students. Lacking
an objective, direct way to measure cognitive load, experienced
mental effort was measured as a proxy. During the learning phase,
each learning task ended with a short measurement of experienced
mental effort: a 9-point mental effort rating scale (Paas, 1992): How
much effort did it take to perform this task? While all students were
instructed to spend approximately 15 min on each learning task,
working through the extra prompts and worked-out steps may
have increased time on task for those students and perhaps put the
students under time pressure. Performing the task under high time
pressure might cause an increase in experienced mental effort.
Therefore, time pressure was explicitly measured with the temporal
demand item from the NASA-TLX (Hart & Staveland, 1998): How
hurried or rushed was the pace of the task?
4.1.4. Data analysis
The scores on the pretest and posttest were analyzed with a



Table 2
Overview of scores (in percentage) per condition.

Condition Pretest (SD) Posttest (SD)

EM 43.75 (11.89) 63.07 (10.19)
CS 41.25 (9.02) 62.25 (11.05)
CS þ EM 41.75 (8.79) 58.50 (12.48)
Control 40.89 (10.09) 58.59 (10.56)

Total 41.86 (9.86) 60.55 (11.16)
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repeated measures analysis of variance with type of support
(CS þ EM vs CS vs EM vs Control) as a between-subjects variable
and time of test (pretest vs posttest) as a within-subjects variable.
The same analysis was conducted on the subjective mental effort
rating and the time pressure rating but with learning task as a
within-subjects variable. In addition, an analysis of variance was
conducted on the ratings per learning task to investigate differ-
ences in required mental effort between conditions.

4.1.5. Procedure
The training was embedded in the students’ current curriculum

as a practical assignment and offered in four different timeslots.
Students were free to choose a timeslot that fit their schedule.
During the 2-h training session, students took place at a computer
in the university computer room and logged in to the online
learning environment. After logging in, students first filled out a
short preliminary questionnaire and were automatically randomly
assigned to one of four conditions. They were instructed to work
individually through the tasks they received on screen and
informed that their screen content could differ from that of the
other students. The experimenter asked students to spend
approximately 15 min on each learning task, comparable to similar
tasks used in other research (Lazonder, Biemans,&Wopereis, 2000;
Lazonder, 2000). They then received the following: pretest,
instructional video, modeling example, four learning tasks, and
posttest. Each learning task concluded with the mental effort and
time-pressure ratings. The instructional video and modeling
example remained available via a link during the learning tasks.
Before the posttest, students filled out a short evaluation and a final
mental effort rating for the training as a whole. After the posttest,
students signed for informed consent, received course credit and
were subsequently dismissed. A debriefingwith preliminary results
followed 8 weeks later.

4.2. Results

The four randomly generated conditions did not differ signifi-
cantly on any of the items on the preliminary questionnaire, such as
age or prior education. They reported equal amounts of time spent
behind a computer per day, and no differences in the use of the
computer for information retrieval (either for personal or educa-
tional goals), news, social media, chatting, and entertainment. The
sample can therefore be considered homogeneous. Some datawere
scored as missing due to the fact that students answered questions
with a dash or a space, and some data were lost due to incidental
technical problems. On the posttest, missing values were
substituted for their corresponding scores on the pretest as a best-
guess e and indicating no progress e under the condition that only
one value in that stepwas missing. If more values weremissing, the
corresponding subscore was also classified as missing data. Total
scores on the posttest were treated the same: if more than one of
the four subscores was missing, they were classified as missing
value, otherwise the total was calculated over the remaining
subscores.

4.2.1. Pretest and posttest scores
Inter-rater agreement on the scoring rubric for pre- and posttest

was measured with a two-way mixed, absolute, single measure
intra-class correlation and amounted to 0.878, indicating a reliable
measure. Students scored rather low on the pretest, achieving a
mean score of 41.86% (SD¼ 9.86). The scores varied between 18.75%
and 62.5%. On the posttest, the mean score improved to 60.55%
(SD ¼ 11.16) with a range from 31.25% to 81.25%. Table 2 shows the
mean scores per condition for the pretest and posttest. The
repeated measures analysis showed that the between-subjects
factor was not statistically significant: F(3, 92) ¼ 0.97, p ¼ .410,
meaning that there was no effect of support and the scores did not
depend on the type of support received. Indeed, the mean scores in
Table 2 reveal that the four groups show a similar progression. The
within-subjects factor did reveal a significant effect: F(1,
92) ¼ 187.46, p ¼ 0.000, h2

partial ¼ 0.671, indicating there was a
substantial effect of training on the test scores.

4.2.2. Mental effort ratings
The mental effort ratings showed a similar pattern: significant

changes over learning tasks, but not between the conditions. The
repeated measures analyses revealed no significant between-
subjects effect F(3, 90) ¼ 0.64, p ¼ 0.593, but a significant within-
subjects effect F(3, 90) ¼ 9.60, p ¼ 0.000, h2

partial ¼ 0.100.
Contrast analysis further revealed that reportedmental effort drops
significantly from 5.21 (SD ¼ 2.03) in learning task 3 to 4.36
(SD ¼ 1.89) in learning task 4: F(1, 90) ¼ 18.14, p ¼ .000,
h2

partial ¼ 0.174. Univariate ANOVAs per learning task revealed no
differences between conditions. Fig. 3 shows mean mental effort
ratings for each condition and each learning task.

4.2.3. Time pressure ratings
Analysis of time pressure showed that although scores were

relatively high (all means above 5 on the 7-point scale), there were
no within-subjects differences: F(3, 89) ¼ 1.01, p ¼ 0.391 or
between-subjects differences: F(3, 89) ¼ 0.16, p ¼ 0.923. Therefore,
students experienced similar time pressure in all conditions and in
all learning tasks. Univariate ANOVAs per learning task confirmed
this finding: on all four learning tasks, differences between condi-
tions were not statistically significant. Fig. 4 shows time pressure
ratings for each condition and each learning task.

4.3. Discussion

This experiment was designed to explore whether the acquisi-
tion of IPS skills was affected by different forms of task support.
However, the results show that all groups show similar increases in
skill. These findings do not provide support for the hypotheses that
1) supported students show higher learning outcomes than un-
supported students, and 2) two forms of support lead to higher
learning outcomes than just one form of support. As a matter of
fact, the control group, which merely received conventional tasks
without any built-in support, performed just as well as the three
groups who received task support. There was a significant increase
in scores from pretest to posttest for all conditions, showing that
the intervention clearly caused a learning effect. From this finding,
it can be concluded that even a short online training, much like the
training sessions often offered by schools, can be effective for
fostering IPS skills. While the results clearly show a short-term
learning effect, it is unclear whether there is potential to achieve
a long-term effect. Additionally, the different types of support
might have different effects on retention, which only manifest
whenmeasured after sufficient delay, or are induced by testing (i.e.,
a testing effect: Dirkx, Kester, & Kirschner, 2014). No such delayed



Fig. 3. Reported mental effort per learning task for all conditions.

Fig. 4. Reported time pressure per learning task for all conditions.
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measurement was undertaken in this experiment. It would there-
fore be interesting to investigate delayed learning effect with a
retention test.

In line with these findings, students reported a similar amount
of required mental effort in all conditions. For this category of
students and in this particular setting, online learning tasks with or
without built-in task support, whether that is completed steps or
emphasized aspects, are equally demanding in terms of mental
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effort. From this self-report of mental effort, it is only possible to
gauge the total amount of experienced cognitive demand, but not
changes in the underlying types of cognitive load. If worked-out
steps reduced intrinsic cognitive load but required students to
invest additional mental effort to process and self-explain the
worked-out steps, it replaced intrinsic with germane cognitive load
and there might be no change in the total amount of experienced
cognitive load (Paas, Tuovinen, Tabbers, & van Gerven, 2003).
Similarly, if prompting leads to more extraneous cognitive load and
less invested energy in learning, germane load is reduced but the
total amount of cognitive load remains the same. However, when
intrinsic or extraneous load is replaced with germane cognitive
load, this hypothetically leads to increased learning (Van
Merri€enboer & Ayres, 2005). It is unlikely that this has happened,
because increased learning would manifest as higher scores on the
skills tests, which were not found. From the current data, the only
valid conclusion is that the different types of support have no effect
on the total amount of experienced cognitive load as measured by
reported mental effort.

The high scores on the time pressure item revealed that many
students experienced time pressure to finish the experiment. In the
short evaluation at the end of the training 43 out of 96 participants
made a remark about experienced time pressure. From their com-
ments it became clear that the lack of time affected their concen-
tration and performance during the learning tasks, or answer
quality on the posttest. These students reported they took less time
to think about and formulate their answers, thereby perhaps
leaving out parts of the reasoning and missing points. This makes it
likely that the learning outcomes are affected and possibly lowered
because of time pressure. Givenmore time per task, students would
perhaps have scored differently.

Inspection of students' solutions on the learning tasks revealed a
great variation in answers. However, there was little instruction on
presenting a solution incorporated in the training, so it cannot be
expected that these outcomes correspond strongly to the level of
their searching skills. Performance on the learning tasks was not
part of the experimental design, and therefore, students' products
were not scored and analyzed. For this reason it is not possible to
comment on the students’ performance during the learning phase.

5. Experiment 2

A second experiment was conducted with the same goal as the
first experiment: to investigate differences in learning outcomes
due to different types of task support. The same design and con-
ditions were used as in the first experiment, but an additional
questionnaire was used and a retention test was added. Some
procedures were adapted to reduce time pressure.

5.1. Method

5.1.1. Participants
A total of 115 students between 18 and 46 years old participated

in the replication (Mage ¼ 20.7 years), 82 of which were female
(71.3%) and 33 male (28.7%). These were all first-year Psychology
students at a Dutch university. Of these 115 students, three had a
Belgian nationality (2.6%) and 48 were German (41.7%). The
remainder was Dutch.

5.1.2. Materials
5.1.2.1. Measurement of information problem solving skill. The same
pretest and posttest were used as in Experiment 1, but a retention
test was added. This retention test was identical to the existing pre-
and posttests, but handled the topic of health benefits of red wine.
Furthermore, a self-report questionnaire was added to the pretest,
posttest and retention test.

5.1.2.2. Self-report questionnaire. The self-report questionnaire was
based on an existing questionnaire (Van Meeuwen, 2008) and
contained 30 items to measure students' systematic approach and
evaluation behavior; for example: “I check whether a page is up-to-
date before I use its information”. Students responded to these
items by selecting ‘Never’, ‘Sometimes’, ‘Often’, or ‘Always’. The
questionnaire included an ‘I don't know’ option to reduce guessing.

5.1.3. Data analysis
The pretest, posttest, and retention test were scored as in

Experiment 1 and subjected to a repeated measures analysis of
variance with type of support (CS þ EM vs CS vs EM vs control) as a
between-subjects variable and time of test (pretest vs posttest vs
retention test) as a within-subjects variable. Mental effort and time
pressure ratings were analyzed with a repeated measures analysis
of variance with learning task as a within-subjects variable. In
addition, a univariate analysis of variance was conducted on the
mental effort and time pressure items per learning task to investigate
differences in required mental effort between conditions.

For the self-report scale, a principle component analysis with
oblimin rotation was conducted on the 30-item scale in a larger
sample size (n ¼ 250) to extract underlying clusters and form
scales. A mean value was calculated for each cluster by averaging
the scores on the corresponding items. The ‘I don't know’ answer
was treated as a missing value, and averages were only calculated if
there was no more than one missing value. Scores were analyzed
with a repeated measures analysis of variance.

5.1.4. Procedure
As in Experiment 1, the training was embedded in the students’

current curriculum as a practical assignment. Participation was
voluntary, but strongly stimulated by granting research participa-
tion credit and informing students that the content of the training
corresponded strongly to one of the course tasks about problem
solving. The session was offered in eight different timeslots. Again,
students were free to choose a timeslot that fit their schedule.
Unlike in Experiment 1, the pretest was now administered in
advance and was filled out at home, 1 week before the training. The
retention test was also filled out at home, 1 week after the training.
The length of the training session remained 2 h, which allowed
students to spend approximately 20 min on each learning task;
compared to 15 min in Experiment 1. Further procedures were
identical to those in Experiment 1. After finishing the final evalu-
ation, students signed a form to obtain research participation credit
and were reminded to fill out the retention test after 1 week. They
were then dismissed. A debriefing followed in a lecture 2 weeks
after the retention test.

5.2. Results

As in Experiment 1, analysis of the answers on the preliminary
questionnaire revealed a homogeneous group in terms of age and
prior education. No notable differences arose in computer usage
patterns or time spent behind the computer per day. Again, some
data was missing, which was handled in the same way as in
Experiment 1.

5.2.1. Pretest, posttest, and retention test
The scores on the pretest ranged between 12.5% and 62.5% with

a mean of 35.14% (SD ¼ 11.18). For the posttest, scores ranged be-
tween 37.5% and 83.33% with a mean score of 61.58% (SD ¼ 11.15).
On the retention test the mean score was 60.6% (SD ¼ 13.73) with a
minimum score of 25% and a maximum score of 87.5%. Table 3



Table 3
Means and standard deviations of scores on the skills test (in percentages), sys-
tematic approach ratings (0e3), and evaluation behavior ratings (0e3) per condition
on the pretest, posttest, and retention test.

Condition Pretest Posttest Retention test

EM Score 34.72 (11.93) 58.33 (11.88) 58.80 (12.41)
Systematic 1.22 (0.36) 1.28 (0.38) 1.39 (0.43)
Evaluation 1.57 (0.42) 1.76 (0.33) 1.89 (0.44)

CS Score 34.25 (8.86) 63.58 (9.14) 60.50 (14.96)
Systematic 1.08 (0.41) 1.22 (0.43) 1.32 (0.45)
Evaluation 1.53 (0.47) 1.78 (0.57) 1.94 (0.42)

CS þ EM Score 36.22 (12.63) 63.06 (12.20) 64.90 (13.93)
Systematic 1.20 (0.44) 1.41 (0.41) 1.32 (0.40)
Evaluation 1.74 (0.50) 1.87 (0.47) 1.93 (0.46)

Control Score 35.27 (12.41) 61.09 (10.79) 57.14 (14.00)
Systematic 1.24 (0.43) 1.34 (0.39) 1.33 (0.49)
Evaluation 1.52 (0.47) 1.95 (0.35) 1.92 (0.42)

Total Score 35.14 (11.18) 61.58 (11.15) 60.60 (13.73)
Systematic 1.19 (0.39) 1.32 (0.39) 1.34 (0.42)
Evaluation 1.57 (0.48) 1.83 (0.46) 1.93 (0.42)
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shows the mean scores per condition for the three tests. The results
resemble those of the first experiment and show an increase in
scores after training, but little difference between the conditions.
The repeated measures analysis confirms that there was no sig-
nificant difference between the groups: F(3, 102) ¼ 1.09, p ¼ 0.358
but a significant difference on the within-subjects factor: F(2,
102) ¼ 236.40, p < 0.001, h2

partial ¼ 0.699. This confirms that there
was a substantial effect of training on the test scores. A planned
contrast revealed that the increase in scores from pretest to post-
test was statistically significant: F(1, 102) ¼ 383.03, p < 0.001,
h2

partial ¼ 0.790, but the scores did not change significantly on the
retention test: F(1, 102)¼ 0.72, p¼ 0.400. There were no significant
interaction effects.
5.2.2. Self-report questionnaire
The Kaiser-Meyer-Olkin measure and sphericity measure indi-

cated adequate sampling and sufficient correlations between
Table 4
Exploratory factor analysis results for the IPS self-report: factor loadings (correlations).

I work according to a predetermined plan when searching, selecting, and processing i
I make an overview (a list or table) of the needed information
I plan where I am going to search for which information
I make a list of steps to follow
I mostly work intuitively and do not use a predetermined plana

I make an overview of possible keywords
I just search for information without thinking about it too mucha

I make a time schedule for performing the task
I systematically keep track of the keywords I have used
I regularly check whether I am searching correctly
While searching, I try to keep an overview of the search process
I deliberately check what I do not know yet in relation to the task
I present the information in an organized and ordered fashion
After visiting a site, I check which information is still needed
At the end, I check again whether I have all the information
I mostly work on and see how far I geta

I make sure that I organize all relevant information well
I keep the desired end product in mind
By looking at the URL (Uniform Resource Locator) I can see if a site is reliable
To decide which site to open, I look at the URL (Uniform Resource Locator)
I check whether the site is up-to-date before I use the information
I check whether information I have found overlaps with previously found information
Before I open a site, I check its reliability
I check whether information I have found contradicts previously found information

Note. Bold values indicate the item is included in the corresponding scale.
a Reverse-coded item.
items: KMO ¼ 0.789, c2 (435) ¼ 1544.54, p ¼ 0.000. An initial
analysis of eigenvalues and interpretation of the scree plot justified
retaining two components for the final analysis. Table 4 shows the
factor loadings and correlations after rotation. These loadings
create two clusters that can be labeled as systematic approach and
source evaluation behavior. Six items were discarded: four with both
loadings below 0.32 and two with equal factor loadings on both
components (Tabachnick & Fidell, 2007). The scales yielded reli-
ability scores of a ¼ 0.85 and a ¼ 0.62 respectively. See Table 3 for
an overview of means and standard deviations for both variables.

For the systematic approach data, Mauchly's test revealed that
the assumption of sphericity had been violated, c2(2) ¼ 21.19,
p ¼ .000. Therefore, the Huynh-Feldt correction was applied to the
degrees of freedom. The test showed a significant increase in
scores: F(1.74, 99) ¼ 13.58, p ¼ 0.000, but a small effect:
h2

partial ¼ 0.125. Subsequent contrast analysis showed that scores
increased significantly from pretest to posttest: F(1, 99) ¼ 16.78,
p ¼ 0.000, h2

partial ¼ 0.150, but did not change significantly on the
retention test. There were no significant differences between con-
ditions: F(3, 99) ¼ 0.40, p ¼ 0.756. For the evaluation behavior data,
the Huynh-Feldt adjustment was necessary as well: c2(2) ¼ 8.40,
p ¼ .015. Results show a significant within-subjects effect F(1.93,
94)¼ 32.98, p¼ 0.000, h2

partial¼ 0.268, but no significant between-
subjects effect: F(3, 94)¼ 0.44, p ¼ 0.726. Contrast analysis shows a
strong increase in scores from pretest to posttest: F(1, 94) ¼ 38.79,
p ¼ 0.000, h2

partial ¼ 0.301, and another small increase on the
posttest. The latter just fails to reach significance: F(1, 94) ¼ 3.90,
p ¼ 0.051, h2

partial ¼ 0.024.

5.2.3. Mental effort ratings
The experienced mental effort during learning tasks shows a

significant within-subjects effect: F(3, 88) ¼ 8.31, p ¼ 0.000,
h2

partial ¼ 0.090, indicating that scores change significantly over
time. However, a significant interaction effect reveals that the effect
depends on the type of support the student received: F(9,
88) ¼ 2.74, p ¼ 0.005, h2

partial ¼ 0.089. Separate repeated measures
ANOVAs for each condition showed significant effects only in the
Systematic approach Evaluation behavior

nformation 0.75 (0.72) �0.12 (0.09)
0.72 (0.68) �0.17 (0.03)
0.67 (0.61) �0.23 (�0.05)
0.67 (0.62) �0.19 (�0.00)
0.66 (0.65) �0.03 (0.16)
0.61 (0.58) �0.12 (0.05)
0.58 (0.57) �0.05 (0.11)
0.57 (0.56) �0.06 (0.10)
0.51 (0.52) 0.04 (0.18)
0.46 (0.49) 0.12 (0.25)
0.45 (0.47) 0.08 (0.21)
0.43 (0.50) 0.24 (0.26)
0.42 (0.47) 0.16 (0.28)
0.41 (0.43) 0.06 (0.17)
0.39 (0.45) 0.24 (0.35)
0.36 (0.45) 0.31 (0.41)
0.35 (0.42) 0.26 (0.36)
0.33 (0.40) 0.25 (0.34)

�0.23 (�0.06) 0.63 (0.56)
�0.13 (0.04) 0.62 (0.58)
0.01 (0.17) 0.55 (0.56)

�0.05 (0.10) 0.52 (0.51)
0.11 (0.24) 0.49 (0.52)
0.09 (0.22) 0.47 (0.50)
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EM condition: F(3, 18) ¼ 0.5.50, p ¼ 0.002, h2
partial ¼ 0.244, and in

the CS condition: F(3, 23) ¼ 7.76, p ¼ 0.000, h2
partial ¼ 0.261. Sub-

sequent contrast analysis indicated that the mental effort ratings in
these groups only changed significantly on the fourth learning task.
In the EM condition, scores dropped from 4.72 (SD¼ 2.16) on task 3
to 3.17 (SD ¼ 2.01) on task 4: F(1, 18) ¼ 7.84, p ¼ 0.012,
h2

partial ¼ 0.316. In the CS condition, scores dropped from 4.74
(SD ¼ 2.34) to 2.83 (SD ¼ 1.64): F(1, 23) ¼ 12.88, p ¼ .002,
h2

partial ¼ 0.369. Fig. 5 shows mental effort ratings for each condi-
tion and each learning task.

5.2.4. Time pressure ratings
Analysis of time pressure ratings revealed no significant changes

over time and no differences between conditions. Separate uni-
variate ANOVAs for each learning task showed that the average
amount of time pressure on each learning task was the same in
each group. Fig. 6 shows time pressure ratings for each condition
and each learning task.

5.3. Discussion

The second experiment replicated the first with some im-
provements. First, it measured additional variables with a self-
report questionnaire to achieve a more complete impression of
the students’ skill level. Second, it set out to reduce the experienced
time pressure by administering the pretest before the training
session. And finally, it included a retention test to measure IPS skill
one week after training. With these improvements, the findings
display a similar pattern as in the first experiment. The significant
increase in scores from pretest to posttest leads to the conclusion
that the intervention was effective for fostering IPS skills. However,
the results do not back the claim that the type of support has an
effect on the learning outcomes. None of the groups that received
support, whether completion strategy, emphasis manipulation, or
both, outperformed the control group.
Fig. 5. Reported mental effort per l
This was also true for scores the self-report questionnaires. For
systematic approach, students scored around 1.19 on the pretest, a
value closer to ‘Sometimes’ than to ‘Often’, indicating that students
are aware that they do not work very systematically when solving
information problems. This score showed a small increase to an
average of 1.32 on the posttest. While statistically significant, the
effect of the training is small, and type of support again showed no
effect. For evaluation behavior, a similar pattern emerges, but with
larger effects. Average scores increase from 1.59 before training to
1.84 after the training, showing a large effect size. From these re-
sults it can concluded that the training significantly improved
students' scores on self-reported systematic approach and source
evaluation behavior, but again, there were no significant differ-
ences between the conditions. This corroborates previous research
that shows evaluation skills can be trained in classroom settings
(Britt & Aglinskas, 2002; Walraven et al., 2010).

In general, scores on the retention test results show a similar
picture for all measured variables. While they increase from pretest
to posttest, they do not change much one week later. All the dif-
ferences between posttest scores and retention test scores are
statistically insignificant and show small effect sizes. However,
some conditions show a small increase in scores after a week, while
others show a decrease in scores. It would be interesting to see if
this difference develops into a significant effect over a longer period
of time. From these findings, it can be concluded that the learning
effect caused by this intervention is sufficiently robust to last one
week.

Compared to Experiment 1, themean reportedmental effort and
time pressure is generally lower. This is an expected finding as
students in Experiment 2 were given more time to perform the
learning tasks. On the fourth learning task - a conventional problem
without support or guidance - the CS and the EM conditions re-
ported significantly less mental effort than the CSþ EM and control
conditions. This might be a hint that these students have become
more efficient in their problem solving and require less mental
earning task for all conditions.



Fig. 6. Reported time pressure per learning task for all conditions.
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effort to reach the solution. However, without performance data on
the learning task, this is impossible to determine (Hoffman &
Schraw, 2010). The subsequent posttest did not show any differ-
ences in performance between the conditions.

In short, Experiment 2 yielded no support for the hypothesis
that supported students show higher learning outcomes than stu-
dents who receive no support. Mean scores in all conditions did not
differ significantly. While the EM and CS conditions reported less
mental effort on a conventional learning task at the end of training,
it is difficult to draw any solid conclusions from this finding.

6. General discussion

The experiments reported on here investigated the hypothesis
that students who receive task support while acquiring IPS skills,
either in the form of completion tasks or emphasis prompts, show
better learning outcomes than students who do not receive task
support. The findings do not support this claim. Students who
receive no task support performed just as well as those who did.
While Experiment 1 suffered from some methodological issues, a
revised version of the experiment confirms the pattern of results
and provides more confidence in this conclusion.

These findings have some implications for the domain of in-
formation problem solving. The current experiment once again
confirms that IPS skills are underdeveloped, even in university-
level students. Pretest scores are low in both experiments. In fact,
the slightly younger group of students in the first experiment
scored higher on the pretest than their counterparts in the second
experiment. This difference shows a discrepancy in prior knowl-
edge between both samples. While the exact cause of this is un-
clear, these differences likely originate from prior experience,
practice, or instructions concerning IPS skills, such as a library
training. However, the most important conclusion to draw from
these findings is that this generation of first-year university stu-
dents do not show very well-developed IPS skills. The scores, which
lie well in the lower half of the range, can only refute claims that
students are ‘digital natives’, a new generation technologically
skilled students in need of adapted education. These findings agree
with research challenging the existence of the digital native
(Bennett, Maton, & Kervin, 2008; Kirschner & van Merri€enboer,
2013; Smith, 2012) and underline our claim that IPS instruction in
schools is a necessity.

The good news is that the current experiments show that a short
online intervention can increase IPS skills. The online training
session was successful, as shown by the significant increase in
scores between pretest and posttest. After the training, students
from both experiments scored slightly over 60% on average, which
leads to two conclusions. First, a 2-h online training including an
instructional video, a modeling example, and four short whole-
tasks can increase students’ IPS skills. As shown by retention test
scores, this increase is maintained for at least a week. Second, effect
sizes are not very large, and a 60% average score after training in-
dicates that there is still much room to grow. However, the
encouraging result of this short training indicates that a scaled-up
version with more content, more task classes containing tasks of
increasing complexity, offered over a longer period of time and
embedded in a multitude of contexts, might prove very effective.

The findings of these experiments also lead to implications for
the field of instructional design. Concerning the effect of built-in
task support, the hypothesis that task support would lead to bet-
ter performance was not confirmed: students who received no
support showed performance equal to that of supported students.
There are two possible explanations for this. First, it might be the
case that both forms of support were ineffective for different rea-
sons. Previous research has shown that completion tasks can lead
to an expertise reversal effect in situations where learners have
high prior knowledge (Kalyuga et al., 2003). However, this effect is
less likely to occur in less structured domains (Nievelstein, van Gog,
van Dijck, & Boshuizen, 2013), which, in combination with the low
pretest scores, makes it unlikely that an expertise reversal effect



Question 1: What is your first step and why?
Maximum points: 2
0 points for statements that reflect that the student starts searching right

away
Add 1

point
for statements reflecting orientation activities: activating prior
knowledge, planning, thinking, etc.

Add 1
point

for statements concerning task demands: determining information
needs, types of sources, formulating a question, etc.

Question 2: Which problem statements would you formulate?
Maximum points: 2
0 points for statements that are irrelevant for the task
1 point for statements that are relevant, but incomplete or

formulated vaguely
2 points for statements that contain all three relevant concepts

(comparable to “What is the influence of X on Y?”)

Question 3: Which search query would you type into Google?
Maximum points: 4
Award a point for each relevant search term or synonym thereof. If the student

shows a systematic search pattern, award an additional point.
Pretest gender-specific education, influence, school performance
Posttest intelligence, change, age
Retention test red wine, health, influence

Question 4: Which three websites would you select? Why?
Maximum points: 4
Pretest sources #3, #4, and #7 yield 2 points, sources #6 and #8 yield 1

point.
Posttest sources #4, #5, and #6 yield 2 points, sources #3 and #8 yield 1

point.
Retention

test
sources #3, #6, and #8 yield 2 points, sources #4 and #5 yield 1
point.

If the sum of these points is 5 or 6, award 2 points for this question.
If the sum of these points is 2, 3, or 4, award 1 point for this question.
If the sum of these points is lower than 2, award no points for this question.
Award an additional point, but no more than 2 points, for all selection criteria

that are mentioned in the comment that do not refer to “relevance”. For
example: reliability, author, publication date, reputation, etc.
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occurred. The other method of support, prompting, can be inef-
fective when prompts are not used as intended, in which case they
show reduced effects on learning outcomes and reported mental
effort (Bannert& Reimann, 2011). Although answers to the prompts
were generally short (i.e., approximately one sentence), they indi-
cated that the prompts were used as anticipated. These findings
lead to the conclusion that the task support methods were imple-
mented correctly.

The second explanation suggests that a maximum learning ef-
fect for this setting was achieved. It could be the case that the
learning effect in this experiment can be attributed to the viewing
of the instructional video in combination with the modeling
example and self-explanation prompts. Modeling examples are
very powerful learning tools when employed correctly (Bjerrum,
Hilberg, van Gog, Charles, & Eika, 2013; Hoogerheide, Loyens, &
van Gog, 2014). Perhaps, after viewing both videos, students were
sufficiently equipped to complete the learning tasks, and had no
need of support. It follows then that the built-in support in those
learning tasks had little value. A video-based modeling example is
intuitively a very suitable method of instruction for teaching these
skills, as most of the IPS process happens on-screen. An expert can
easily record a screencast while working and reasoning through a
problem and offer this as an example to students. The effects of
using a modeling example for teaching IPS skills presents an
interesting venue for future research.

In the context of this short online training, task support did not
lead to higher learning outcomes. However, Rosman et al. (2016)
show that working memory capacity moderates the acquisition of
IPS skills. In a holistic approach to learning IPS, task support, such as
completion tasks or prompts for emphasis, is essential to avoid
overloading the learner during complex task performance. However,
in situationswhere the learner's skill level is sufficient or the tasks are
less complex, it might have no beneficial effects. Therefore, the re-
sults of these experiments should not convince instructional de-
signers that task support does notmatter. Instead, it should stimulate
them to seek closer alignment of the learner's skill level, task
complexity, andbuilt-in task support.Whendesigning instruction for
IPS on a larger scale and over a longer period of timewith increasing
levels of complexity, managing the cognitive load imposed on the
learner remains a crucial aspect of instructional design.

Several limitations of these experiments should be regarded
when interpreting and generalizing these conclusions. The IPS
training was offered in a single 2-h session with learning tasks of
the same type and complexity. In educational practice, students are
confronted with a great variety of tasks. The current intervention
did not include different task types (c.f. Gerjets & Hellenthal-
Schorr, 2008), which makes it less likely that far transfer
occurred. To achieve far transfer, students would benefit frommore
learning tasks: more practice with varying task demands and task
complexity, yet without added time pressure. An embedded
approach, where instructional designers combine IPS instruction
with domain-specific instruction in an extensive curriculum, ap-
pears appropriate for this task (Argelag�os & Pifarr�e, 2012;
Wopereis, Brand-Gruwel, & Vermetten, 2008).

The current intervention focused on learning in an online
environment without involvement of a teacher and without feed-
back on the learning tasks. Considering themultitude of factors that
can increase task complexity and cognitive demand, personalized
feedback on performance would be beneficial for students, as this
allows them to learn from their mistakes. Research has shown a
positive effect of feedback on development of metacognitive skills
in online learning environments (Van den Boom, Paas, van
Merri€enboer, & van Gog, 2004) and therefore presents another
interesting direction for future research. For example, interventions
could be improved with the addition of a cognitive feedback
element inwhich teachers provide students with adapted feedback
on their performance (Timmers et al., 2015; Wopereis et al., 2015).

To conclude, this experiment makes clear that first-year uni-
versity students are not as information literate as many assume,
and that their IPS skills need to be trained. The 2-h online inter-
vention in this experiment shows a promising learning effect.
While it was expected that different types of task support would
vary in their effect on the learning outcomes, this proved not to be
the case. The authors hypothesize that a powerful modeling
example is most likely responsible for a large proportion of the
learning effect and increased students’ skill level, thereby reducing
the value of the task support in the subsequent learning tasks. A
follow-up study will investigate whether modeling examples are
indeed a powerful learning tool for IPS.
Appendix 1. Scoring rubric for information problem solving
assessment



Question 5: What do you do when you visit a text-rich website and want to
find out if it contains relevant information?

Maximum points: 1
1 point
for mentioning a scanning strategy, such as reading headlines only or

using the search function (Ctrl þ F)

Question 6: Which criteria do you use to determine whether information is
useful for your task?

Maximum points: 2
1 point for each of the

following criteria
goal of the text, reliability, author reputation,
publication date, language/style, compares to other
sources

Question 7: How do you deal with contradicting information?
Maximum points: 1
1 point
For statements that reflect critical scrutiny, for example searching for

more information or investigating reliability, or if the answer reflects
that both sides of the story are incorporated in the solution.

Calculating the score
Subscore for step 1: Define the

problem
The sum of scores for
questions 1 & 2

Subscore for step 2: Search
information

The score for question 3

Subscore for step 3: Select
information

The score for question 4

Subscore for step 4: Process
information

The sum of scores for
questions 5, 6, & 7

Total score: The average of these four subscores
forms
the final score for the test and is
expressed
as a percentage of the maximum score
(4 points)
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